
Version 3.2.2 Concepts and Facilities

This document applies to Entire System Server Version 3.2.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© Copyright Software AG 1987 - 2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Table of Contents
................ 1Concepts and Facilities - Overview
................ 1Concepts and Facilities - Overview
..................... 2Introduction
..................... 2Introduction
................ 3What Is The Entire System Server?
................ 3What Is The Entire System Server?
.................. 3General Information
............. 4Advantages of 4th Generation Technology
.................. 4Greater Flexibility
............. 6Platform Independence and Remote Access
......... 7Entire System Server in a Distributed Processing Environment
............. 8Tasks the Entire System Server Can Perform
..................... 9Security
............... 10Easy Installation and Maintenance
.............. 11Benefits of Using The Entire System Server
.............. 11Benefits of Using The Entire System Server
.................. 11General Information
.............. 11Increased Flexibility and Productivity
................. 11Application Programming
.................. 12Power to the User
.................... 12Data Center
................... 12Cost Reduction
................ 13Improved Machine Performance
.............. 14Entire System Server At Work - Examples
.............. 14Entire System Server At Work - Examples
.................. 14General Information
................... 14IEBCOPY Utility
................... 16Disc Maintenance
................... 18File Maintenance
.................... 23Job Handling
.................. 25Spool File Handling
................. 26Imagination Is the Limit

iCopyright © Software AG 2003

Table of ContentsConcepts and Facilities - Overview

Concepts and Facilities - Overview
This documentation covers the following topics:

Introduction Provides an overview of the Entire System Server.

What Is the Entire
System Server

Gives a definition of the Entire System Server, discusses some of the major advantages
of using 4th generation technology, explains how Entire System Server can play a vital
role in distributed processing, lists the kind of tasks the Entire System Server can
perform and takes a brief look at security issues.

Benefits of Using
the Entire System
Server

Illustrates the benefits of using the Entire System Server as the basic technology in
corporate data processing, and deals with some of the considerations concerning the
switch to this new technology.

Entire System
Server at Work:
Examples

Briefly explains the principle of operation behind the Entire System Server, and
illustrates the use of the Entire System Server with some detailed example coding.

1Copyright © Software AG 2003

Concepts and Facilities - OverviewConcepts and Facilities - Overview

Introduction
This document gives an overview of the Entire System Server, a software package from Software AG that treats
operating system information and services as if they were conventional data. This overview is structured into
three main parts:

What Is the Entire System Server gives a definition of the Entire System Server, discusses some of the
major advantages of using 4th generation technology, explains how Entire System Server can play a vital
role in distributed processing, lists the kind of tasks the Entire System Server can perform and takes a brief
look at security issues.
Benefits of Using the Entire System Server illustrates the benefits of using the Entire System Server as the
basic technology in corporate data processing, and deals with some of the considerations concerning the
switch to this new technology.
Entire System Server at Work: Examples briefly explains the principle of operation behind the Entire
System Server, and illustrates the use of the Entire System Server with some detailed example coding.

Copyright © Software AG 20032

IntroductionIntroduction

What Is The Entire System Server?
This section covers the following topics:

General Information
Advantages of 4th Generation Technology
Entire System Server in a Distributed Processing Environment
Tasks the Entire System Server Can Perform
Security
Easy Installation and Maintenance

General Information
The Entire System Server is a Software AG product that makes operating system information and system
services available to the user, whether it be an application developer, system programmer, or computer operator.

The Entire System Server does this by providing a logical view of the operating system in much the same way as
a database management system provides access to a database such as Adabas or DB2. For this reason, the Entire
System Server is often referred to as a virtual database for system data management. With the Entire System
Server, a comprehensive number of views are made available, the following table lists only a sample selection:

View Name Description

READ-FILE Read data from any specific file.

WRITE-FILE Write data to any specific file.

VTOC-UPDATE Perform VTOC maintenance functions.

ACTIVE-JOBS Access active job information.

SPOOL-QUEUE Access spool queue information.

CONSOLE Access operator console.

SEND-MESSAGE Send message to a specific user.

SUBMIT Submit a batch job.

With its large array of views, the Entire System Server constitutes a major enhancement to sites that use Natural,
the proven and powerful 4th generation development environment from Software AG which enjoys world-wide
renown. This yields an important two-way benefit:

Operating system information and services are made available to application programmers using standard
Natural statements (Find, Process);
Full Natural functionality is extended to data center and operations personnel.

The following figure illustrates the Entire System Server as the virtual database of the operating system.

3Copyright © Software AG 2003

What Is The Entire System Server?What Is The Entire System Server?

As outlined in the following subsections, the Entire System Server can be used in almost any computing setup. It
can provide operating system data and services in a single-computer shop, in heterogeneous, multi-CPU setups,
and it can also serve distributed computing environments: client programs from anywhere within a
(heterogeneous) computer network can request a system service available anywhere else within the same
network, and Entire System Server can provide that service.

Advantages of 4th Generation Technology

Greater Flexibility

One of the most important distinguishing features of Natural’s 4th generation technology is the strict distinction
it makes between the logical level and the physical level of data processing, that is, between the application logic
and the structure of the database on which corporate information is physically stored. For example, entries in a
personnel file are assigned fixed attributes such as surname, first name, age, and sex. Natural programs can refer
to these attributes that are defined as fields in the logical view of the file, and the information is then extracted
from the database regardless of the file structure.

The Entire System Server mirrors this approach by separating the application logic from the internals of the
operating system on which the application runs. For example, a Natural program can access active operating
system job information through the Entire System Server by referring to such assigned fixed attributes defined in
the logical view of active jobs as job-name, job-number, type and priority, as well as operating-system-specific
attributes such as status or step-name (OS/390 and VSE/ESA), and account number or the predefined maximum
time the job can use (BS2000/OSD).

With this in mind, the implications of introducing the Entire System Server to a Natural environment are
immense and constitute a major technological advance.

Whereas before, application programmers could only access the database from Natural programs without
knowledge of the physical structure of the database, Entire System Server now also allows them to access
operating system information and services using the same syntax and without detailed knowledge of the

Copyright © Software AG 20034

What Is The Entire System Server?Advantages of 4th Generation Technology

operating system and coding languages such as Assembler or COBOL. At the same time, the introduction of 4th
generation technology to the data center means that system programmers need not program in Assembler any
more, but can use Natural, which is distinguished by its flexibility and ease of use.

Again, the twin advantage of this technology becomes apparent immediately:

Natural programmers now have the capability of managing their own files and accessing other operating
system services, enabling them to write much more powerful applications without the need for special
knowledge of and/or further training in operating system issues;
System programmers and computer operators can now write their own site-specific (Natural) applications
based on Entire System Server to automate or simplify their tasks. For example, programs are easily written
for operations such as disk and dataset maintenance, file and catalog management, job and printout
information retrieval. Programs can even be written for resource management, for example, ensuring
optimal use of disk space.

The following figure illustrates the use of the Entire System Server:

Both data center personnel and application developers benefit from the Entire System Server, as it allows them to
react much more independently and flexibly to their work requirements. Using Natural, program development is
much faster, while the run-time performance of Natural programs compares favorably with programs written
using 3rd generation technology.

Always willing to prove its point, Software AG itself has already realized ready-for-work application solutions
based on the Entire System Server in the following areas of data center tasks:

Production management:
Planning and automatic scheduling of batch jobs and online tasks (Entire Operations, formerly Natural
Operations);
Event management:
Console message filter and automatic response to system events (Entire Event Management, formerly
Natural Console Management);
Output management:
Automatic bundling, separation, distribution and archiving of output (Entire Output Management, formerly
Natural Output Management).

For more details on these products, see the Software AG publications System Automation: The Road to
Operation Center Management (Order Number DCS-111-006), and The System Management Solution
(Order Number RZS11B1E062 680).

5Copyright © Software AG 2003

Greater FlexibilityWhat Is The Entire System Server?

Additionally, Software AG offers a solution for comprehensive application development:

Application development:
Software AG’s application development toolkit Natural ISPF provides a single, comfortable system image
of an installation’s data processing resources. The Entire System Server extends Natural ISPF to allow
access not only to Natural objects, but also to a wide range of other objects such as JCL, JCS, objects
written in other programming languages such as COBOL and Assembler, and, of course, operating system
items.

For a more detailed overview of Natural ISPF, see the Software AG publication Natural ISPF Concepts and
Facilities (Order Number ISP-141-006).

Platform Independence and Remote Access

Another major advantage of Natural’s separation of the logical from the physical level is the resulting
independence of operating platform. Applications written in Natural can be ported to a wide range of operating
platforms without any changes being required. With the Entire System Server installed, all
operating-system-specific information and services become available to the Natural environment, whether the
platform is OS/390, FACOM, VSE/ESA, BS2000/OSD or UNIX. For example, Natural applications running on
a UNIX platform can access host data, and vice versa. Investments in Entire System Server-based application
software are therefore protected, should your data processing department be rescaled during future corporate
reorganization or restructuring exercises, or if the underlying operating platform is modified or upgraded.

The following figure illustrates the Entire System Server as platform-independent interface to operating system
information and services:

However, the wider implication of operating system independence is that it allows multi-CPU support within a
corporate network of interconnected computers. With Software AG’s communication product Entire Net-Work
installed on each computer within the network, operations across computers and even across operating systems
in a heterogeneous network are possible.

Copyright © Software AG 20036

What Is The Entire System Server?Platform Independence and Remote Access

For example, given an IBM mainframe running VM and several VSE/ESAs, the combination of the Entire
System Server and Entire Net-Work makes communication among the various VSE/ESAs possible. It allows the
exchange of system data between computers in the network running, for example, OS/390 operating systems,
BS2000/OSD, or even UNIX. The whole computer network can be monitored and controlled from a single
location, and Natural applications can access data and operating system information and services on any
computer within the network.

The only requirement is that an Entire Net-Work component and an Entire System Server (ESY) nucleus be
installed on each computer, as illustrated in the following figure:

Note:

The abbreviation ESY in the figure stands for the Entire System Server.

Regardless of operating system or location within a computer network, applications based on the Entire System
Server can provide a uniform Application Program Interface (API) for a variety of tasks that in the past required
a number of different, operating system specific tools, as well as special knowledge of the operating environment
the tools were designed for.

Entire System Server in a Distributed Processing
Environment
The ever-spreading use of the UNIX operating system and the increasing integration of workstations in computer
networks has created a rising demand for system management tools that support a distributed processing
environment, in which all components are defined in terms of clients and servers.

7Copyright © Software AG 2003

Entire System Server in a Distributed Processing EnvironmentWhat Is The Entire System Server?

Client/server computing is more than remote database access of the type that can be achieved in a multi-CPU
environment as described above. In the client/server environment, applications can be "cut up" and distributed
among the computers within the network as appropriate. For example, the presentation component may run on a
workstation client, while other parts of the application may run on an operating system most suited to their
needs. All application components are interconnected with appropriate communication software.

Based on Natural, which allows pieces of applications to be easily ported to different computers within a
heterogeneous network, the Entire technology of Software AG allows the evolutionary transition of purely
mainframe-oriented software systems to a client/server environment that spans mainframes, mid-range
computers, UNIX systems and workstations.

The Entire System Server, in combination with Entire Net-Work as part of the communication software, allows
operating system services and information to be tied into the Entire solution in a modern, heterogeneous
computer network.

The following figure illustrates the use of the Entire System Server in a client/server setup:

This approach cuts the Gordian knot of integrating an operating system server into a corporate data processing
environment that provides all types of users with a single image of all available distributed information and
services. Using existing methods and syntax, the Entire System Server provides a relatively simple solution to an
apparently complex problem.

Tasks the Entire System Server Can Perform
This subsection gives a brief overview of the tasks that programs based on the Entire System Server can perform.
The tasks mentioned are only a selection from a wide array of possible implementations. Entire System Server at
Work - Examples gives some typical examples of programs that call the Entire System Server to access
operating system items.

Copyright © Software AG 20038

What Is The Entire System Server?Tasks the Entire System Server Can Perform

The primary use of the Entire System Server lies in the areas of spool management, file and disk management
and system maintenance, as illustrated by the following figure:

Spooling System:
Using the spool management group of views, programs can be written that allow the user to write
procedures to submit jobs anywhere in the computer network, track each job’s progress and inspect return
codes and output files. One good example of the use of this functionality is in applications that issue long
requests to the operating system: the online application can trigger a batch job that performs the request.
The application can continue work, and it can look into the spool to check the job’s progress and check its
result. The views used for this example are Submit, Spool-files and Read-spool.
File and Disk Management:
The views that provide file management functionality allow the allocation, deletion and editing of files, as
well as the copying of files from one library into another. In a computer network, files can be maintained
anywhere in the network, and file transfer can be performed from one computer to another, regardless of the
operating system. For example: whereas before, supplying data to a remote location involved creating a
tape, taking it to the remote location and reading it there, the Entire System Server makes file transfer a
simple online operation using the Copy-File view.
Useful disk management operations using the Vtoc-update view include the renaming, scratching and
purging of catalog entries, as well as releasing unused space.
System Maintenance:
System maintenance functions offered by the Entire System Server include the Console view which
provides an image of the operator console and allows the user to issue operator commands to the operating
system. The Send-Message view allows messages to be distributed to users around the network.

Another important use of system maintenance views, is the ability to execute operating system functions
(for example, IEBCOPY, IDCAMS, ARCHIVE) with standard Natural syntax. Operating system utilities
can be given a uniform user interface, and no special knowledge of operating system internals is required.

On the hardware side, if a new computer is added to the network, no changes to the applications of the
installation are required. All that is needed is a new Entire System Server node on the new machine.

Security
Making operating system services and information available to several types of user raises security issues. The
Entire System Server supports a variety of standard security packages such as RACF, TOP SECRET and ACF2.
The introduction of the Entire System Server to your installation has no effect on the authorization levels in place
at your site: before the user is given access to any operating system data or service, authorization is derived from
the external security system. This means that the user has the same authorization level for these items with or
without the Entire System Server.

9Copyright © Software AG 2003

SecurityWhat Is The Entire System Server?

Additionally, with Natural Security, access to operating system resources and information can be controlled in
the same way as the logical views of Natural of the database are protected: each Entire System Server view can
be given a specific authorization profile.

Easy Installation and Maintenance
During the installation of the Entire System Server, no restart of the operating system is necessary. There are no
"hooks" into the operating system. The clearly defined and stable interfaces provided by the operating system
(SSI, SAF, SMS, CMS, UCON, LMS etc.), together with the modifiable startup parameters make the Entire
System Server easy to customize to changing conditions at your site. No maintenance work is required, the
Entire System Server provides you with a 24-hour a day, 7-day a week service.

Copyright © Software AG 200310

What Is The Entire System Server?Easy Installation and Maintenance

Benefits of Using The Entire System Server
This section covers the following topics:

General Information
Increased Flexibility and Productivity
Cost Reduction
Improved Machine Performance

General Information
The benefits of using the Entire System Server as basic technology in a heterogeneous corporate data processing
environment can be summed up as:

Increased flexibility and productivity for all personnel involved in data processing;
Reduced costs in system maintenance and training;
Improved machine performance.

This section analyses these benefits in more detail.

Increased Flexibility and Productivity
Application Programming
Power to the User
Data Center

Use of the Entire System Server increases the flexibility and productivity of all personnel involved in data
processing: from the system programmer managing the storage media and optimizing machine performance,by
way of the application developer including operating system information and services in his or her programs,
right up to the end-user retrieving an output file stored in an automated office system.

Application Programming

Incorporating Entire System Server functionality in applications written in Natural, application programmers are
provided with capabilities that include Read and Write access to files, file allocation and maintenance, job status
display and spool queue display.

This relieves data center personnel of much routine work, and enables the development of applications that
automate certain time-consuming procedures and functions, signalling an end of the distinction between online
and batch processing.

For example, a batch job can be built using program logic, and can be submitted, its progress monitored, and its
output data read into the program without any interruption.

This integration of operating system functions and information in application development allows the simple and
quick realization of much more powerful applications. In particular, application developers are given more
control over system resources.

Like the data center, the application development department becomes much more productive and efficient at no
extra training or labor cost, as the added capabilities provided by the Entire System Server are available to the
application programmer without leaving the Natural environment.

11Copyright © Software AG 2003

Benefits of Using The Entire System ServerBenefits of Using The Entire System Server

Power to the User

At the high end of data processing, applications based on the Entire System Server allow the selective delegation
of more processing power to the end-users, who can use standardized interfaces written for them to access the
operating system to perform such functions as allocate their own files, display the spool queue, and track the
progress of jobs.

The Entire System Server thus answers a basic need in modern enterprise computing. An increasing number of
corporations are following the general trend of decentralizing their data processing activities. They are moving
away from the large, central mainframe towards mid-range computers and workstations installed in the
departments, all interlinked within a computer network to provide selective processing power where it is needed
most: in the hands of the user.

In combination with Entire Net-Work, applications based on the Entire System Server can serve such a
distributed environment and provide a single system image across the whole network. Users can control their
own environments without troubling the data center, which can get on with the logistical tasks of network
management, event management, software distribution and workload balancing.

Data Center

The Entire System Server allows Natural programs to be written to satisfy unique, site-specific requirements in
the areas of system maintenance (disk and file), job submission and management, resource management,
accounting data (SMF) and system console operations. This enables data center staff to respond quickly and
flexibly to problems and questions arising from the user community:

All system queries have a common syntax, meaning that the system programmer or computer operator can
concentrate on getting the job done, rather than worrying about how to do it. There is no need to become
embroiled in the details of the operating system structure and use complicated Assembler routines;
Required information is easily accessed using simple but powerful statements or commands, allowing
system programmers to deal quickly with adhoc requests and react to problems before they become critical;
The use of Entire Net-Work in a multi-computer environment allows access to information located at
remote sites. Additionally, a whole heterogeneous computer network can be controlled from a single
location.

All these points make system programmers and computer operators much more efficient and productive
members of staff. With the use of the Entire System Server, the data center becomes the nerve center of
distributed corporate data processing.

Cost Reduction
Whichever way corporate decisions concerning their data processing methods go, whether it be towards a
distributed environment or back to central mainframes, the Entire System Server protects investments in existing
applications and thus helps ensure that the time and costs involved in changes to the hardware are kept at a
minimum.

In the day-to-day running of data processing operations, a range of different software vendor products were
traditionally required, which do not communicate with each other and often have no programming interface
(API). The use of the Entire System Server alleviates this problem and can help cut costs in a number of areas:

Labor and training costs:
To support the increasing number of heterogeneous computer networks using traditional methods of system
programming, expert knowledge of the various hardware and operating system configurations had to be
condensed in a small team of staff. Such system programmer expertise is rare and expensive, as is the cost
of training to acquire such expertise.
Additionally, the typical tools for data center operations are Assembler programs, which are complicated
and expensive to code. The use of the Entire System Server eliminates the need to know the details of

Copyright © Software AG 200312

Benefits of Using The Entire System ServerCost Reduction

hardware and operating system structures. Through the automated facilities provided by Natural, fewer lines
of code need to be generated for a Natural application than for applications written in traditional languages.
Simple Natural programs can therefore replace complex Assembler routines, and system programmers can
implement tools with a minimum of training and effort. The Entire System Server can thus reduce labor and
training costs significantly.

Making operating system information and services available to application programmers using the Entire
System Server also helps save training costs in the application development department, as the operating system
can be accessed using Natural statements already familiar to Natural programmers.

Storage device costs:
Using the Entire System Server, flexible programs for managing storage devices (DASD) and datasets can
be written and implemented. For example, programs can manage DASD space optimally by freeing unused
space, generating reports on datasets and relocating datasets if necessary. Optimal management of such system
resources using site-specific Natural programs helps reduce the number of storage devices required.
Service costs:
User queries to the data center concerning information such as the position of jobs in the job queue, the
status of jobs or printouts are time-consuming and distract data center personnel from their system programming
tasks. Though the Entire System Server can be used to satisfy such requests quickly and efficiently, the best
solution is to build Natural applications with customized user interfaces to function as an online "help desk" that
allows users to retrieve such information themselves. This eliminates the cost of having an information service
provided by the data center.

Improved Machine Performance
The use of the Entire System Server can lead to an improvement in machine performance.

For example, running the Entire System Server and starting Natural programs under a TP-monitor (Com-plete,
CICS, IMS, UTM etc.) makes information available to the user that he or she could previously only obtain by
running batch jobs or utility jobs (TSO, TIAM).

Operating system information accessed via Natural programs can be used either for pure retrieval purposes
(display) or to control the system as components of a Natural application. This makes it possible to reduce the
machine workload, as fewer TSO or TIAM users means less occupied storage, and it also helps prevent system
shortages or failures.

13Copyright © Software AG 2003

Improved Machine PerformanceBenefits of Using The Entire System Server

Entire System Server At Work - Examples
This section covers the following topics:

General Information
IEBCOPY Utility
Disc Maintenance
File Maintenance
Job Handling
Spool File Handling
Imagination Is the Limit

General Information
The principle of operation behind the Entire System Server is surprisingly simple.

Just as a Natural program would access conventional data, Entire System Server views can be called from a
Natural program using the Natural statements Process or Find, depending on the view involved. Just as a
database identifier is required for a standard call to a database, the call to the Entire System Server is identified
by a node number.

The Entire System Server recognizes the node number and processes the call, returning the requested operating
system service or information to the program. Each operating system in the computer network is identified by the
node number, thus enabling access to any system from anywhere within the network.

This section illustrates the use of the Entire System Server with some example program coding. The examples
illustrate how simple, easy-to-write Natural programs can be used to display system information on the terminal
screen, requiring only a minimum of input from the user. However, this is not the only use of the Entire System
Server.

The examples should be seen as a starting point for more powerful applications that can process system
information automatically, invisible to the user.

IEBCOPY Utility
In OS/390 systems, the IEBCOPY utility can be invoked using only a few lines of code in a Natural program:

*
 * The INPUT statement is a standard Natural statement which
 * defines a map that is displayed on the terminal screen when the
 * program is run. The map prompts the user to specify the source * member to be
 copied and the destination member:
 *
 INPUT // ’ Input Dsname ...:’ IEBCOPY.IN-DSNAME
 / ’ Volser:’ IEBCOPY.IN-VOLSER
 // ’ Output Dsname ..:’ IEBCOPY.OUT-DSNAME
 / ’ Volser:’ IEBCOPY.OUT-VOLSER
 // ’ Member:’ IEBCOPY.IN-MEMBER
 / ’ New Name:’ IEBCOPY.OUT-MEMBER
 // ’ Replace:’ IEBCOPY.REPLACE ’(yes/no)’

Copyright © Software AG 200314

Entire System Server At Work - ExamplesEntire System Server At Work - Examples

*
 * The PROCESS statement calls the IEBCOPY utility via the
 * Entire System Server view IEBCOPY to perform the copy
 * operation.
 * The NODE variable is used if the destination member resides on
 * a different node:
 *

 PROCESS IEBCOPY USING IN-DSNAME = IEBCOPY.IN-DSNAME
 , OUT-DSNAME = IEBCOPY.OUT-DSNAME
 , IN-MEMBER = IEBCOPY.IN-MEMBER
 , OUT-MEMBER = IEBCOPY.OUT-MEMBER
 , REPLACE = IEBCOPY.REPLACE
 , NODE = ##NODE

 * In case of an error, the user can be reprompted with the input
 * map and an error message:

 IF ERROR-CODE > 0
 REINPUT ERROR-TEXT
 END-IF

Running such a simple Natural program results in the following online prompt:

 IEBCOPY utility

 Input Dsname ...: __
 Volser: ______

 Output Dsname ..: __
 Volser: ______

 Member: __________
 New Name: __________

 Replace: ___ (yes/no)

All the user has to do is fill in the required information and press Enter to perform the copy operation for
example:

15Copyright © Software AG 2003

IEBCOPY UtilityEntire System Server At Work - Examples

 IEBCOPY utility

 Input Dsname ...: MY.OLD.DATASET__
 Volser: ______

 Output Dsname ..: MY.NEW.DATASET___
 Volser: ______

 Member: OLDNAME____
 New Name: NEWNAME____

 Replace: ___ (yes/no)

By running such a simple Natural program, operating system utilities can be used without any special knowledge
of utility-specific syntax on the part of the user.

Disc Maintenance
Example 1
Example 2

Example 1:

The following example program allows the user to perform certain disk maintenance functions in any operating
system environment:

....
 * When this program is run, the user is presented with the map
 * defined by the following INPUT statement. Possible functions to * maintain a
 catalog entry are: RENAME, SCRATCH, PURGE:
 *
 INPUT // ’ Function ..:’ VTOC-UPDATE.FUNCTION
 // ’ Volume:’ VTOC-UPDATE.VOLSER
 / ’ Dsname:’ VTOC-UPDATE.DSNAME
 // ’ New Name ..:’ VTOC-UPDATE.NEWNAME

 *
 * The disc is accessed by addressing the corresponding fields on * the view
 VTOC-UPDATE using the PROCESS statement. Within a
 * multi-CPU environment, the NODE variable allows the program to * access the
 disc on another computer:
 *
 PROCESS VTOC-UPDATE USING NODE = ##NODE
 , DSNAME = VTOC-UPDATE.DSNAME
 , VOLSER = VTOC-UPDATE.VOLSER
 , FUNCTION = VTOC-UPDATE.FUNCTION
 , NEWNAME = VTOC-UPDATE.NEWNAME

Copyright © Software AG 200316

Entire System Server At Work - ExamplesDisc Maintenance

Again, this example shows that no special knowledge of operating system structures is required to write and use
such a program; indeed, the same program can be used in different operating systems.

Example 2:

The following example shows how a Natural program can retrieve storage unit information and display it to the
user. This example is taken from an OS/390 environment:

...
 *
 * The FIND statement addresses the view UNIT-ATTRIBUTES to read
 * the desired device. The NODE parameter is used when reading the
 * information from a different machine within the computer
 * network:
 *
 FIND UNIT-ATTRIBUTES WITH CLASS = ’DASD’
 AND NODE = ##NODE

 *
 * Using the DISPLAY statement, the output is presented to the
 * user when the program is run:
 *
 DISPLAY (ZP=OFF)
 ’Unit/Adr’ UNIT-ATTRIBUTES.UNIT
 ’Unit/Type’ SERIES
 ’avail./Unit’ DEVICE-STATUS
 ’OPEN/DCB’’S’ DCB-COUNT
 5X
 ’mounted/Volume’ VOLSER
 ’mount/Attributes’ MOUNT-STATUS
 ’avail./of Volume’ VOLUME-STATUS
 ’FREE/CYL’ FREE-CYLINDERS
 ’FREE/TRACKS’ FREE-TRACKS
 ’FREE/EXTENTS’ FREE-EXTENTS
 ADD 1 TO #NUMBER
 END-FIND
 ...

Running the program with the above code produces output similar to the following:

Unit Unit avail. OPEN mounted mount avail. FREE FREE FREE
 Adr Type Unit DCB’S Volume Attributes of Volume CYL TRACKS EXTENTS
 ---- ------ ------- ----- ------- ---------- --------- ----- ------ -------
 300 3380 ONLINE 102 SYSF06 RESIDENT PRIVATE 367 50 20
 310 3380 ONLINE 9 NAT002 RESIDENT PRIVATE 70 138 48
 320 3380 ONLINE 5 NDM001 RESIDENT PRIVATE 96 13 16
 330 3380 ONLINE 65 XKGSD1 RESIDENT PRIVATE 293 280 58
 350 3380 ONLINE 21 USR8A6 RESIDENT STORAGE 140 1080 236
 360 3380 ONLINE 7 DCN002 RESIDENT PRIVATE 131 19
 370 3380 ONLINE 55 DBDC06 RESIDENT PRIVATE 1018 63 19
 380 3380 ONLINE 6 EUP003 RESIDENT PRIVATE 29 141 23

17Copyright © Software AG 2003

Disc MaintenanceEntire System Server At Work - Examples

File Maintenance
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6

The file maintenance group of views allow users to allocate files, display file information, and rename, delete or
copy files using small Natural programs.

Example 1:

The following example works in an OS/390 and BS2000/OSD environment. The program prompts the user for
the name of a dataset to be compressed (in BS2000/OSD terms, unused space to be released).

 *
 * The prompt is defined using the INPUT statement, allowing the
 * user to specify the dataset to be compressed:
 *
 INPUT // ’ Dataset ...:’ FILE-MAINTENANCE.DSNAME
 / ’ Volume:’ FILE-MAINTENANCE.VOLSER
 *
 * Compression is performed by addressing the FILE-MAINTENANCE
 * view using the PROCESS statement.
 * The NODE parameter must be used
 * when compressing a dataset that resides on a different node within
 * the computer network:
 *
 PROCESS FILE-MAINTENANCE USING FUNCTION=’COMPRESS’
 , DSNAME = FILE-MAINTENANCE.DSNAME
 , VOLSER = FILE-MAINTENANCE.VOLSER
 , NODE = ##NODE

Libraries can thus be maintained easily using only a few lines of Natural code.

Example 2:

The following example shows how a simple Natural program can perform a file transfer operation from one
VSE/ESA system to another in a network. Note that in this example, up to three Entire System Server nodes are
involved: the program runs on one machine, but can copy a file residing on a second machine to a third machine
within the computer network.

Copyright © Software AG 200318

Entire System Server At Work - ExamplesFile Maintenance

*
 * The INPUT statement defines an input mask to be displayed
 * when the program is run, in which the user can specify the
 * source and target datasets.
 * The NODE parameter specifies the node, if
 * different from the node on which the program runs.
 *
 INPUT // ’ Dataset...:’ COPY-FILE.FROM-DSNAME
 / ’ Sublib....:’ COPY-FILE.FROM-SUB-LIBRARY
 / ’ Member typ:’ COPY-FILE.FROM-MEMBER-TYPE
 / ’ Member....:’ COPY-FILE.FROM-MEMBER
 / ’ Volser....:’ COPY-FILE.FROM-VOLSER
 / ’ Node......:’ COPY-FILE.FROM-NODE
 // ’ to’ (I)
 // ’ Dataset...:’ COPY-FILE.TO-DSNAME
 / ’ Sublib....:’ COPY-FILE.TO-SUB-LIBRARY
 / ’ Member typ:’ COPY-FILE.TO-MEMBER-TYPE
 / ’ Member....:’ COPY-FILE.TO-MEMBER
 / ’ Volser....:’ COPY-FILE.TO-VOLSER
 / ’ Node......:’ COPY-FILE.TO-NODE
 / ’ Replace...:’ #REPLACE

 *
 * The copy operation is performed by the PROCESS call to the
 * COPY-FILE view, specifying the source and target dataset
 * characteristics:
 *
 PROCESS COPY-FILE USING FROM-DSNAME = COPY-FILE.FROM-DSNAME
 , FROM-SUB-LIBRARY = COPY-FILE.FROM-SUB-LIBRARY
 , FROM-MEMBER-TYPE = COPY-FILE.FROM-MEMBER-TYPE
 , FROM-MEMBER = COPY-FILE.FROM-MEMBER
 , FROM-VOLSER = COPY-FILE.FROM-VOLSER
 , FROM-NODE = COPY-FILE.FROM-NODE
 , TO-DSNAME = COPY-FILE.TO-DSNAME
 , TO-SUB-LIBRARY = COPY-FILE.TO-SUB-LIBRARY
 , TO-MEMBER-TYPE = COPY-FILE.TO-MEMBER-TYPE
 , TO-MEMBER = COPY-FILE.TO-MEMBER
 , TO-VOLSER = COPY-FILE.TO-VOLSER
 , TO-NODE = COPY-FILE.TO-NODE
 , NODE = ##NODE
 , REPLACE = #REPLACE ’(Yes/No)’

Example 3:

The following example shows how a simple Natural program can be used to perform a file transfer operation
from an OS/390 to a VSE/ESA node in a network:

19Copyright © Software AG 2003

File MaintenanceEntire System Server At Work - Examples

...
 *
 * The INPUT statement defines an input mask to be displayed
 * when the program is run, in which the user can specify the
 * source and target datasets.
 *
 INPUT // ##TITLE (AD=OI IP = OFF)
 // ’ Dataset...:’ COPY-FILE.IN-DSNAME
 / ’ Member....:’ COPY-FILE.IN-MEMBER
 / ’ Volser....:’ COPY-FILE.IN-VOLSER
 / ’ Node......:’ COPY-FILE.IN-NODE
 // ’ to’ (I)
 // ’ Dataset...:’ COPY-FILE.OUT-DSNAME
 / ’ Sublib....:’ COPY-FILE.OUT-SUB-LIBRARY
 / ’ Member typ:’ COPY-FILE.OUT-MEMBER-TYPE
 / ’ Member....:’ COPY-FILE.OUT-MEMBER
 / ’ Volser....:’ COPY-FILE.OUT-VOLSER
 / ’ Node......:’ COPY-FILE.OUT-NODE
 // ’ Replace...:’ #REPLACE

 *
 * The copy operation is performed by the PROCESS call to the
 * COPY-FILE view, specifying the source and target dataset
 * characteristics. The different operating systems involved in
 * the copy operation are identified by the node number:
 *
 PROCESS COPY-FILE USING IN-DSNAME = COPY-FILE.IN-DSNAME
 , IN-MEMBER = COPY-FILE.IN-MEMBER
 , IN-VOLSER = COPY-FILE.IN-VOLSER
 , IN-NODE = COPY-FILE.IN-NODE
 , OUT-DSNAME = COPY-FILE.OUT-DSNAME
 , OUT-SUB-LIBRARY = COPY-FILE.OUT-SUB-LIBRARY
 , OUT-MEMBER-TYPE = COPY-FILE.OUT-MEMBER-TYPE
 , OUT-MEMBER = COPY-FILE.OUT-MEMBER
 , OUT-VOLSER = COPY-FILE
 , OUT-NODE = COPY-FILE.OUT-NODE
 , REPLACE = #REPLACE
 , NODE = ##NODE

Comparing this example with the previous one, note how similar the syntax to perform the file transfer is, even
though the second example involves a different operating system. No special system-specific knowledge is
required on the part of the programmer. All required information is provided by the Entire System Server’s
logical view of the operating systems involved, and standard sample programs are easily and quickly modified to
access specific system information and services in heterogeneous networks.

Example 4:

The following example program displays a library directory according to specified characteristics:

Copyright © Software AG 200320

Entire System Server At Work - ExamplesFile Maintenance

 ...
 *
 * The INPUT statement defines an input mask in which the user can
 * specify member characteristics according to which the directory * is to be
 composed:
 *
 INPUT // ’ Dataset...........:’ LIB-DIRECTORY.DSNAME
 / ’ Element...........:’ LIB-DIRECTORY.ELEMENT
 / ’ -type.............:’ LIB-DIRECTORY.ELEMENT-TYPE
 / ’ -version..........:’ LIB-DIRECTORY.ELEMENT-VERSION

 *
 * The requested information is provided by the
 * view LIB-DIRECTORY, called with the FIND statement.
 * The node number specifies the operating system in the computer * network from
 which the information is to be read:
 *
 FIND LIB-DIRECTORY WITH NODE = 31
 AND DSNAME = LIB-DIRECTORY.DSNAME
 AND ELEMENT = LIB-DIRECTORY.ELEMENT
 AND ELEMENT-TYPE = LIB-DIRECTORY.ELEMENT-TYPE
 AND ELEMENT-VERSION = LIB-DIRECTORY.ELEMENT-VERSION

 *
 * The DISPLAY statement is used to present the desired
 * information to the user at his terminal:
 *
 *
 DISPLAY LIB-DIRECTORY.ELEMENT-TYPE (AL=1)
 LIB-DIRECTORY.ELEMENT (AL=40)
 LIB-DIRECTORY.ELEMENT-VERSION (AL=10)
 END-FIND

Example 5:

The following example illustrates the use of a Natural program to copy all files with a certain prefix and suffix as
list elements (type P) to an LMS library in a BS2000/OSD system:

21Copyright © Software AG 2003

File MaintenanceEntire System Server At Work - Examples

....
 *
 * An INPUT statement defines the input mask in which the user
 * specifies the target LMS library, as well as the search
 * criteria prefix and suffix. The replace option is used to
 * specify whether datasets of the same name in the target
 * library are to be overwritten.
 *
 INPUT (AD=MI’_’) ’NAME OF LMS LIBRARY:’ #LMS-LIB
 ’PREFIX...................:’ #PREFIX
 ’SUFFIX...................:’ #SUFFIX
 ’REPLACE..................:’ #REPLACE

 *
 * The names of the datasets to be searched consist of three
 * parts: the prefix, element, and suffix. For the search
 * operation, they can be compressed into one string, where the
 * wildcard symbol asterisk (*) selects any element:....
 *
 COMPRESS #PREFIX ’*’ #SUFFIX INTO #DSNAME LEAVING NO SPACE

 *
 * All the datasets matching the search criteria are selected using
 * the CATALOG view:
 *
 FIND CATALOG WITH NODE = #NODE
 AND DSNAME = #DSNAME

 *
 * The parts of the dataset name, compressed into DSNAME, are now
 * separated:
 *
 MOVE CATALOG.DSNAME TO #DSNAME
 EXAMINE #DSNAME FOR #PREFIX AND REPLACE WITH ’*’/* NOT IN DSNAME
 EXAMINE #DSNAME FOR #SUFFIX AND REPLACE WITH ’*’
 SEPARATE #DSNAME INTO #DSNAME-PARTS(*) WITH DELIMITER ’*’
 MOVE #DSNAME-PARTS(2) TO #ELEMENT
 MOVE CATALOG.DSNAME TO #DSNAME

*
 * The datasets can now be copied using the COPY-FILE view:
 *
 PROCESS COPY-FILE USING NODE = #NODE
 , FROM-DSNAME = #DSNAME
 , TO-DSNAME = #LMS-LIB
 , TO-PRODUCT = ’M’
 , TO-ELEMENT = #ELEMENT
 , TO-ELEMENT-TYPE = ’P’
 , REPLACE = #REPLACE
 END-FIND

Example 6:

The following example is taken from a simple Natural program to print a file.

Copyright © Software AG 200322

Entire System Server At Work - ExamplesFile Maintenance

....
 *
 * When the program is run, the user is prompted for details of
 * the dataset to be printed by the input mask defined by the INPUT
 * statement:
 *
 INPUT /’NAME OF FILE TO PRINT......: ’ #FILENAME
 /’SPACE-PARAMETER............: ’ #CONTROL ’(E OR BLANK)’
 / ’JOB-NAME.................: ’ #JOB-NAME
 / ’DEVICE...................: ’ #DEVICE
 / ’STARTNO..................: ’ #STARTNO
 / ’ENDNO....................: ’ #ENDNO

 *
 * Printing is performed by the call to the WRITE-SPOOL view:
 *
 PROCESS WRITE-SPOOL USING NODE = #NODE
 , DSNAME = #FILENAME
 , JOB-NAME = #JOB-NAME
 , CONTROL = #CONTROL
 , DEVICE = #DEVICE
 , STARTNO = #STARTNO
 , ENDNO = #ENDNO

Job Handling
Example 1
Example 2

The Entire System Server provides a number of views that allow users to retrieve system information from a
Natural program. Views are available for display of address space, main storage, as well as active tasks.

Example 1:

The following lines of Natural code call the ACTIVE-JOBS view and specify the information items required for
display. The example can be used in an OS/390, FACOM, VSE/ESA and BS2000/OSD system. The NODE
parameter is used to access a different machine in the computer network.

 FIND ACTIVE-JOBS WITH NODE = ##NODE
 AND JOB-NAME = #JOB-NAME
 AND TYPE = #TYPE
 AND CPU-USED = #CPU-USED
 AND STATUS = #STATUS

 END-FIND

The resulting output from this program is presented in the following format in an OS/390 system:

23Copyright © Software AG 2003

Job HandlingEntire System Server At Work - Examples

 Job-Name Type Status Cpu used Region JobNr. ProcName StepName
 *_______ *_____ *_______ __________ ______ ______ ________ ________
 MASTER STC NON-SWAP 2226.21 268 3513
 PCAUTH STC NON-SWAP 0.01 164 PCAUTH
 TRACE STC NON-SWAP 0.01 104 TRACE
 GRS STC NON-SWAP 0.03 1016 GRS
 DUMPSRV STC NON-SWAP 2.66 92 DUMPSRV DUMPSRV
 CONSOLE STC NON-SWAP 305.78 204 CONSOLE
 ALLOCAS STC NON-SWAP 0.01 148 ALLOCAS
 SMF STC NON-SWAP 6.57 152 IEFPROC SMF
 LLA STC NON-SWAP 1.69 332 LLA LLA
 ACF2 STC NON-SWAP 1.61 172 IEFPROC ACF2
 JES2 STC NON-SWAP 1607.18 936 JES2 JES2
 RMF STC NON-SWAP 10.72 76 3525 IEFPROC FRMF
 TMON8DLS STC NON-SWAP 281.03 568 3202 TMON8DLS TMON8DLS
 TMDBDLS STC NON-SWAP 33.66 248 3122 TMDBDLS TMDBDLS
 TMONMVS STC NON-SWAP 79.22 152 4013 TMONMVS TMONMVS

The same program produces the output in the following format in a BS2000/OSD system (all jobs beginning
with "N" are displayed):

 Job-Name Type JobNr. Cpu used Accnt-Nr Cpu-max Sta-Typ
 N*______ *_____ _______ __________ ________ __________ _______
 NATV21 BATCH 0.68 E 32767.00 2
 NATV21 BATCH 0.67 E 32767.00 2
 NATISPF BATCH 0.85 1 32767.00 2
 NAT220 BATCH 0.78 1 32767.00 2
 NETWORK TP 451.26 1 32767.00 2
 NCL BATCH 203.40 1 NTL 2

Example 2:

The following example illustrates the use of a Natural program to handle job variables in a BS2000/OSD
environment.

Copyright © Software AG 200324

Entire System Server At Work - ExamplesJob Handling

....
 *
 * The INPUT statement defines an input mask which is displayed on * the
 terminal screen at run time, together with the options for * the FUNCTION
 field:
 *
 INPUT
 /’Name of Job-Variable: ’ #JV-NAME
 /’Node : ’ #NODE
 / ’Function (READ / WRITE / ALLOC / ERASE / END): ’ #FUNCTION
 // ’ only for function WRITE:’
 / ’Date: ’ #DATA (AL=20)
 / ’Substring-start: ’ #SUBSTR-START (NL=3 SG=OFF)
 / ’(Substring-)length: ’ #SUBSTR-LENGTH (NL=3 SG=OFF)
 / ’Value-length: ’ #VALUE-LENGTH (NL=3 SG=OFF)
 / ’Password, if required: ’ #PASSWORD

 *
 * The view JOB-VARIABLES can then be addressed by the program,
 * the fields used depending on the specified function.
 * Below are examples for READ and WRITE:
 *
 VALUE ’READ’
 * -----------
 RJV. FIND JOB-VARIABLES WITH NAME = #JV-NAME
 AND NODE = #NODE
 AND FUNCTION = #FUNCTION
 AND READ-PASSWORD = #PASSWORD

 VALUE ’WRITE’
 * ------------
 WJV. FIND JOB-VARIABLES WITH NAME = #JV-NAME
 AND NODE = #NODE
 AND FUNCTION = #FUNCTION
 AND DATA = #DATA
 AND WRITE-PASSWORD = #PASSWORD
 AND LENGTH = #VALUE-LENGTH
 AND SUBSTRING-START = #SUBSTR-START
 AND SUBSTRING-LENGTH = #SUBSTR-LENGTH

Spool File Handling
The following example illustrates how job output can be read from the spool in a VSE/ESA system and written
to a file.

25Copyright © Software AG 2003

Spool File HandlingEntire System Server At Work - Examples

....
 *
 * An input mask is defined with the INPUT statement:
 *
 INPUT
 / ’ Job name.........:’ #JOB
 / ’ Job number.......:’ #JOBN
 // ’ Mark spool type..:’ #SEL(1) ’CC’ (I) ’completion codes’
 / 21X #SEL(2) ’RD’ (I) ’ reader queue’
 / 21X #SEL(3) ’LS’ (I) ’ list queue’
 / 21X #SEL(4) ’PU’ (I) ’ punch queue’
 / 21X #SEL(5) ’XM’ (I) ’ transmit queue’
 / ’ Dataset number...:’ #DS
 // ’to’ (I)
 / ’ Library........:’ WRITE-FILE.LIBRARY
 / ’ Sub library....:’ WRITE-FILE.SUBLIB
 / ’ Member.........:’ WRITE-FILE.MEMBER
 / ’ Member type....:’ WRITE-FILE.MEMBER-TYPE
 / ’ VSAM catalog...:’ WRITE-FILE.VSAM-CAT
 ...
 *
 * To read the job output, the READ-SPOOL view is called,
 * identifying the job and output file required:
 *
 FIND READ-SPOOL WITH JOB-NAME = #JOB
 AND JOB-NUMBER = #JOBN
 AND TYPE = #TYPE
 AND DATA-SET = #DS
 AND NODE = ##NODE

 *
 * To write the output file to a file, the WRITE-FILE view is
 * called, specifying the destination member:
 *

 PROCESS WRITE-FILE USING LIBRARY = WRITE-FILE.LIBRARY
 , SUBLIB = WRITE-FILE.SUBLIB
 , VSAM-CAT = WRITE-FILE.VSAM-CAT
 , MEMBER = WRITE-FILE.MEMBER
 , MEMBER-TYPE = WRITE-FILE.MEMBER-TYPE
 , RECORD = READ-SPOOL.RECORD
 , NODE = ##NODE
 END-FIND

With the Entire System Server, different types of system data can thus be accessed and stored as conventional
files using easy Natural programs. If such programs are implemented in applications, even users with no special
computer training can use this advanced technology.

Imagination Is the Limit
The above examples illustrate the kind of tasks the Entire System Server can be used for, but they are not
exhaustive. Small programs can be written for specific tasks, but more elaborate site-specific applications can be
built to automize whole areas of data center tasks. As already mentioned, Software AG provides ready
applications based on the Entire System Server in the area of operations scheduling, event management, and
output handling (see the section What is Entire System Server).

Copyright © Software AG 200326

Entire System Server At Work - ExamplesImagination Is the Limit

Additionally, the Entire System Server installation tape provides a comprehensive online tutorial consisting of
sample programs for every Entire System Server view. These programs not only serve as a useful online training
guide, but can also be customized to meet the requirements of the installation, and can be used as a starting point
for the development of more complex applications.

Experienced application developers and system programmers will readily recognize the potential of using the
Entire System Server as a powerful aid to build tools for their work. If we can say that the Entire System Server
provides the brush and the colors, then the application developers and system programmers paint the picture. As
with all creative artists, their ingenuity is the limit.

27Copyright © Software AG 2003

Imagination Is the LimitEntire System Server At Work - Examples

	Cover Page
	page 2

	Table of Contents
	Concepts and Facilities - Overview
	Introduction
	What Is The Entire System Server?
	General Information
	Advantages of 4th Generation Technology
	Greater Flexibility
	Platform Independence and Remote Access

	Entire System Server in a Distributed Processing Environment
	Tasks the Entire System Server Can Perform
	Security
	Easy Installation and Maintenance

	Benefits of Using The Entire System Server
	General Information
	Increased Flexibility and Productivity
	Application Programming
	Power to the User
	Data Center

	Cost Reduction
	Improved Machine Performance

	Entire System Server At Work - Examples
	General Information
	IEBCOPY Utility
	Disc Maintenance
	File Maintenance
	Job Handling
	Spool File Handling
	Imagination Is the Limit

